Integrasi Numeric

integrasi numerik adalah suatu cara untuk menghitung aproksimasi luas daerah di bawah fungsi yang dimaksud pada selang yang diberikan.

Thank you for reading this post, don't forget to subscribe!

Teori

Integral tak tentu

Integral tak tentu atau antiturunan atau antiderivatif adalah suatu bentuk operasi pengintegralan suatu fungsi yang menghasilkan suatu fungsi baru. Fungsi ini belum memiliki nilai pasti sehingga cara pengintegralan yang menghasilkan fungsi tak tentu ini disebut “integral tak tentu”

Integral tertentu

Integral tentu (definite integral) adalah bentuk integral yang variabel integrasinya memiliki batasan. Batasan tersebut biasanya disebut sebagai batas atas dan batas bawah. Batas variabel integrasi umumnya ditulis di bagian atas dan bawah notasi integral.

rumus1Dipandang dari sudut persamaan diferensial maka mencari nilai integral L adalah sama dengan menyelesaikan persamaan diferensial:

\frac{dx}{dy}=f(x)

Dengan syarat batas F(x)=0

untuk Integrasi numerik mempunyai metode penyelesaian banyak jadi saya cumak jelasin yang saya ketahui seperti :
1.Metode Newton-Cotes
2.Metode Trapezoid
3.Metode Romberg
4.Metode Simpson

Metode Trapezoid

Aturan Trapezoid adalah suatu metode pentdekatan integral numerik dengan polinom rde satu. Dalam metode ini, kurva yang berbentuk lengkung di dekatkan dengan garis lurus sedemikian sehingga, bentuk dibawah kurvanya seperti trapesium

Rumus metode Trapezoid bisa di lihat di gambar di bawah :

rumus2

 

I=\int_{a}^{b}f(x)dx

I=\int_{a}^{b}\left(f(a)+ \frac{f(b)-f(a)}{b-a}\right)dx

I=\int_{a}^{b}\left(f(a)+ \frac{f(b)-f(a)}{b-a}\right)d\frac{b}{a}

I=\frac{f(b)-f(a)}{b-a}\frac{x^2}{2}\frac{b}{a}

I=(a-b)\frac{f(b)-f(a)}{2}

 

Rumus ini didasarkan pada estimasi luas di bawah kurva dengan menggunakan trapezoid. Pertama,interval [a, b] dibagi menjadi beberapa sub-interval berikut :

a=x0,x1, ...xn-1,xn=b

Trapezoid sub-interval

rumus-4

\int_{b}^{a}f(x)d(x)=\int_{x0}^{x1}f(x)d(x)+\int_{x1}^{x2}f(x)d(x)+...+\int_{xn-1}^{xn}f(x)d(x)

\frac{h}{2}\left[f(x_0)+f(x_1) \right]+\frac{h}{2}\left[f(x_1)+f(x_2) \right]+...+\frac{h}{2}\left[f(x_n-1)+f(x_n) \right]

\frac{h}{2}\left[ f(x_0)+2f(x_1)+...2f(x_1)+...2f(xi)+...2f(x_n-1)+2f(x_n)\right]

sehingga menghasilkan persamaan:

I=\frac{h}{2}\left(f_0+2\sum_{i=1}^{n-1}+f_n\right)

Bisa di simpulkan [xi, xi + 1] alasnya, dan kedua sisi vertikalnya f (xi) dan f (xi + 1). Luasnya sama dengan alas dikalikan dengan tinggi rata-rata. seperti diatas:

Baca juga :   Galat dan Penyelesaian
h=\frac{b-a}{n}

keterangan :

f0 = batas bawah
fi = batas atas
h = Luas daerah diantara batas atas fi dan batas bawah f0
n = interval

Program

Hasil

List Komputasi Numeric

  1. Integrasi Numeric
  2. Galat dan Penyelesaian
  3. Persamaan Non Linier
  4. Persamaan Linier
  5. Persamaan Diferensial